Optimal Scoring for Unsupervised Learning
نویسندگان
چکیده
We are often interested in casting classification and clustering problems as a regression framework, because it is feasible to achieve some statistical properties in this framework by imposing some penalty criteria. In this paper we illustrate optimal scoring, which was originally proposed for performing the Fisher linear discriminant analysis by regression, in the application of unsupervised learning. In particular, we devise a novel clustering algorithm that we call optimal discriminant clustering. We associate our algorithm with the existing unsupervised learning algorithms such as spectral clustering, discriminative clustering and sparse principal component analysis. Experimental results on a collection of benchmark datasets validate the effectiveness of the optimal discriminant clustering algorithm.
منابع مشابه
Presentation of an efficient automatic short answer grading model based on combination of pseudo relevance feedback and semantic relatedness measures
Automatic short answer grading (ASAG) is the automated process of assessing answers based on natural language using computation methods and machine learning algorithms. Development of large-scale smart education systems on one hand and the importance of assessment as a key factor in the learning process and its confronted challenges, on the other hand, have significantly increased the need for ...
متن کاملPresentation of an efficient automatic short answer grading model based on combination of pseudo relevance feedback and semantic relatedness measures
Automatic short answer grading (ASAG) is the automated process of assessing answers based on natural language using computation methods and machine learning algorithms. Development of large-scale smart education systems on one hand and the importance of assessment as a key factor in the learning process and its confronted challenges, on the other hand, have significantly increased the need for ...
متن کاملScoring anomalies: a M-estimation formulation
It is the purpose of this paper to formulate the issue of scoring multivariate observations depending on their degree of abnormality/novelty as an unsupervised learning task. Whereas in the 1-d situation, this problem can be dealt with by means of tail estimation techniques, observations being viewed as all the more ”abnormal” as they are located far in the tail(s) of the underlying probability...
متن کاملDeep Learning for Automatic Summary Scoring
Automatic summary scoring is used very often by summarization system developers to test different algorithms and to tune their system. We have developed a new approach based on representation learning, using both unsupervised and supervised learning components, to score a summary based on examples of manually evaluated summaries. Our deep learning approach greatly surpassed ROUGE in terms of co...
متن کاملApplying Unsupervised Learning To Support Vector Space Model Based Speaking Assessment
Vector Space Models (VSM) have been widely used in the language assessment field to provide measurements of students’ vocabulary choices and content relevancy. However, training reference vectors (RV) in a VSM requires a time-consuming and costly human scoring process. To address this limitation, we applied unsupervised learning methods to reduce or even eliminate the human scoring step require...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009